Photo-Catalytic (Molander) Alkylation Production Kit

Photo-Catalytic (Molander):
Alkylation Production Kit
(HCK1016-01-001)

The trifluoroborate alkylation reaction (Minisci reaction) described by Prof. Molander is a powerful late stage functionalization tool.The trifluoroborate alkylation reaction (Minisci reaction) described by Prof. Molander is a powerful late stage functionalization tool.

Photo-catalytic alkylation production kit using 8 different alkylation reagents in 50 µmol scale reaction condition. C-H functionalization will primarily occur on electron-deficient heteroarenes at one or several positions.

The typical protocol is performed at 0.1 mol/l of substrate prepared as solution in DMSO or H2O/ACN with 5 equiv. of trifluoroacetic acid.
Each sealed reaction vial contains either 75 µmol of BF3K reagent with 100 µmol of K2S2O8 or 250 µmol of tert-butyl peracetate. Typically, the reaction is performed with 6200K white LED or blue LED (450 nm). The alkylation production kit contains 2 sets of vials allowing the screening of two different substrates or 1 substrate in two solvents. Sparging reaction solvents with nitrogen or argon while transferring reagents is important to achieve highest conversions of product.  See protocol diagram for instructions.

Protocol at 500 µl volume reaction condition

  • In the vial provided containing the Ir catalyst, prepare 4.0 ml of substrate solution at 0.1 mol/L of substrate (400 µmol substrate needed) in either DMSO or H2O/ACN with 153 µL of trifluoroacetic acid (5 equiv.).  Mix thoroughly.
  • Degas the substrate/catalyst solution with subsurface sparging via N2 or Ar line with exit needle for 5 minutes.
  • Using a clean and dry syringe, add 500 µL of the substrate solution to each reaction vial (8 reactions).
    Place samples in vial holder HCK1006-01-018.
  • Turn on lamp (6200K white LED or blue LED 450 nm) and stir vials for 2 to 4 hours (or longer if necessary and there is substrate remaining).  Be sure to plug in fan to maintain RT.
  • Upon completion of reaction, prepare analytical sample for each reaction condition with 5 µl sample diluted into 200 µl in either DMSO or water/acetonitrile 50/50.
  • Analyze resulting analytical samples by LC/MS.

Lucent 360, photoredox, C-N couplings
Lucent360 Customized Reaction Screenings

Learn how to streamline with Lucent360 customized reaction screenings and save on time & setups when matching optimal wavelength to a photocatalyst.

Upcycling Plastic Using Light
Photocatalytic Deconstruction of Polystyrene

What if we could shine a blue LED on our 8 billion tons of plastic waste and get back a valuable chemical feedstock? Click to read about the Reisner group’s work looking at tackling this problem.

photocatalysis in seawater
Photocatalysis in Seawater

Seawater: It’s abundant, messy, contains salts, microorganisms, biomass, organic and inorganic pollutants (and microplastics) and might just be a great solvent for generating hydrogen peroxide with visible light photocatalysis

Comparing Commercial Photoreactors

How should we compare commercial photoreactors? Or better yet, how do we discuss the important details of a photochemical reaction?

The 21 Must-Read Photochemistry Papers of 2021

Beyond the best photochemistry papers of 2021, read about the amazing year we had here at HepatoChem.

Utilizing the Lucent360 From Screen to Scale

Read on for a step by step study taking a photocatalyzed-Arbuzov reaction from screen to scale utilizing the unique features of the Lucent360™

Introducing the Lucent360

The Lucent360’s flexible design gives you the best options to learn everything you need to know to take your photochemical reactions from screen to scale.

Photochemistry of earth-abundant metals

A recurring theme in our recent articles: there isn’t enough iridium or ruthenium in the earth’s crust to do all the photochemistry we’d like to do at scale.

The Attack of the Photocatalytic Microrobots!

Self-propelled autonomous microrobots that can swim through mazes to seek and destroy microplastics? Read on…

Using Multiphoton Excitation To Generate Potent Photooxidants

Our review of a recent Wickens paper describing the formation of powerful new photooxidants through a mechanism of multiphoton excitation.

Petal Power: Organic Dyes in Photochemistry
Potpourri Catalysis – Fascinating Photoredox Chemistry With Organic Dyes

Add dried flower petals to your photochemistry reaction? This group did. Their paper on photoredox chemistry with organic dyes is brilliant.

Contact Us

Interested in learning more about our products?

Complete our short contact form and we’ll get back to you as soon as possible.

Stay up-to-date!
Get insights and tips from experts