Lucent 360 Case Study: Light Intensity

Lucent360™ Case Study:

Multiple LED Intensity / Catalyst Screening in a Single Experiment

The Lucent360™ LED modules and vial holders/reactors are interchangeable allowing the user to design the perfect experiment to fit their needs.    With variable wavelength, light intensities vial arrangements and temperature control, the flexibility available to design a custom optimization are seemingly endless.  The Lucent360™ allows you to quickly investigate the reactions parameters necessary to scale up a reaction at small scale with production using the same instrument.

A demonstration of the flexibility afforded by the Lucent360™ is shown by the following reaction light intensity and catalyst screen for the iridium catalyzed C-C bond formation (see Figure 1).

Figure 1:
 

Using the Lucent 360™ multi-light screener (HCK1021-01-010) capable of screening 16 reactions at 4 different wavelengths and light intensities, the following reaction screen was performed at 450 nm.  Four iridium catalyst concentrations (1 mol %, 0.5 mol %, 0.1 mol %, 0.01 mol %.) were performed with four different light intensities on the Lucent360™.  Based on the actinometry experiments performed in 2 ml reactions, each setting corresponds to running the reactions at 0.25 W, 0.54 W, 1.05 W and 1.2 W effective power. These effective powers correspond to photon flux ranging from 9.5×10-7 to 4.5×10-6 Einstein/s (moles photons/second).

Effective Power/
Reaction (W)
(+/-) Photon Flux (Einstein/s)
Quadrant 1 1.21 8.4% 4.54E-06
Quadrant 2 1.05 8.3% 3.94E-06
Quadrant 3 0.54 6.0% 2.03E-06
Quadrant 4 0.25 4.1% 9.50E-07

The multi-light intensity/catalyst screen was performed according to the following protocol (Table 1):

To each 4 ml vial equipped with a Teflon septa and stir bar was added a solution containing 1.1 mg Ni-glyme (5 mol %, 5 µmol) and 1.3 mg dtbbpy (5 mol %, 5 µmol) in methanol and the solvent was removed under reduced pressure (16 vials). To the resulting vial was weighed 48.9 mg Cs2CO3 (1.5 equiv., 150 µmol under inert atmosphere and capped.  To this vial was added a 1 ml sparged solution in DMSO containing 19.9 mg bromoacetophenone (100 µmol), 35.6 mg Boc-Val-OH (1.5 equiv., 150 µmol) and 7.7 mg biphenyl (0.5 equiv., 50 µmol) as an internal standard.  Ir(dF-CF3-ppy)2(dtbbpy) was added as a solution in DMSO to afford 0.01, 0.1, 0.5 or 1 mol % catalyst.  Additional DMSO was added to each reaction to bring total reaction volume to 2.0 mL DMSO.  Reaction was performed at 30 °C in the Lucent360™ with 450 nm LED.  Analytical samples were taken from each vial at 5, 15, 30 and 60 minutes for analysis by LC-MS (10 µL dilution to 1 mL in DMSO).

Table 1: Experimental Details (for standard conditions)

Reagent Equivalent Amount (µmol) 0.05 M
bromoacetophenone 1 100 19.9 mg
boc-Val-OH 1.5 150 32.6 mg
Ir(dF-CF3-ppy)2(dtbbpy) 0.01 1 1.1 mg
Ni-glyme 0.05 5 1.1 mg
dtbbpyp 0.05 5 1.3 mg
Cs2CO3 1.5 150 48.9 mg
Biphenyl 0.5 50 7.7 mg
solvent DMSO 0.05M 0.002 L

 

Monitoring the reaction screen for 1 hr demonstrated clear trends in the product formation in relation to the catalyst concentration and light intensity (Table 2). Each reaction with 1 mol % Ir catalyst resulted in similar conversions (62-65%) at 60 minutes independent of the power setting.  With 0.5 mol % catalyst 0.54 W or higher was sufficient to achieve a similar conversion.   Lower catalyst loadings were detrimental to the conversion regardless of power setting.

 

Conversion at 60 minutes
Power (%)
Ir cat
(mol%)
0.25 W 0.54 W 1.05 W 1.21 W
1 62.0 63.5 65.6 65.2
0.5 47.8 65.1 67.7 65.8
0.1 15.7 33.7 45.2 47.7
0.01 1.0 0.2 2.6 2.6

 

While final conversion is similar for the seven conditions highlighted in green in Table 2, significant differences were observed in the initial rates and time to reaction completion (Figure 3).  Both reactions at 1.0 W and 1.2 W are completed by 30 minutes with minimal additional product formation while the two lower power settings take the full 60 minutes for completion.

 

Figure 3:  Plot of time course for 1 mol % at 0.25 W, 0.54 W, 1.05 W and 1.21 W

 

Based on the results, the reaction can be performed with 0.5 mol % photocatalyst and 0.54W to achieve similar conversions to higher catalyst loading and light intensity (Figure 4) albeit with a slower reaction.

 

Figure 4:  Plot of time course for 0.54 W setting with 4 catalyst concentrations

 

Monitoring the initial rate of the reaction at 5 minutes, we can begin to see clearly the significant effect of the light intensity on the reaction.  Increasing the initial rate of the reaction is a key parameter in determining the appropriate conditions to scale up a photochemical reaction.  What does this all mean for this C-C bond formation reaction?  We’re not sure yet, but we know that without the easy setup of the Lucent360™ and the ability to monitor multiple light intensities at the same time, it would have taken us significantly longer to get all this data.   Maybe for our next experiment using this reaction, we could look at 4 different concentrations of the nickel co-catalyst at each light intensity in comparison to the 0.5 mol % iridium catalyst, or screen or add additional wavelengths (365 nm, 380 nm, 405 nm or change the concentration of the substrates.  Whatever we decide, we know that it will be easy to perform with the Lucent360™.

 

Figure 5:

Photocatalysis in Seawater

Seawater: It’s abundant, messy, contains salts, microorganisms, biomass, organic and inorganic pollutants (and microplastics) and might just be a great solvent for generating hydrogen peroxide with visible light photocatalysis

Comparing Commercial Photoreactors
When is an apple an apple or when is it an orange? How should we compare commercial photoreactors?  Or better yet, how do we discuss the important details of a...
The 21 Must-Read Photochemistry Papers of 2021
A belated year in review 2021 At HepatoChem, we had a big year in 2021. We started shipping our new photoreactor the Lucent360™, added members to our team, moved...
Utilizing the Lucent360 from screen to scale
A few weeks ago, we discussed the history of the Lucent360™, our new photoreactor for light and temperatures control for screen to scale, in both batch and flow....
Introducing the Lucent360 TM
A Brief History of a PhotoReactor We write from time to time here about the topics that we find interesting or humorous in the photoredox, visible-light photocatalysis...
Photochemistry of earth-abundant metals
A recurring theme for many of our articles over the last few months is that there just isn’t enough iridium or ruthenium in the earth’s crust to do all of the...
The Attack of the Photocatalytic Microrobots!
The attack of the photocatalytic microrobots! We have intended to write a bit about visible-light decomposition of contaminants for a while... so what better entry into...
Using Multiphoton Excitation To Generate Potent Photooxidants
A New Potent Photooxidant Pushing the limits of LED driven visible-light photocatalysis requires some creative thinking to get more redox potential out of the tools...
Petal Power: Organic Dyes in Photochemistry
Potpourri Catalysis – Fascinating Photoredox Chemistry With Organic Dyes
Spring is nearly here in Massachusetts.  The snow has almost completely melted, and the days are getting longer.  Soon the first flowers will bloom and some of those...
sarcastic 2020 logo
The 20 Must Read Photochemistry Papers from 2020
Year in review 2020.  Let’s all agree to not look back.  20 papers for 2020 As the year comes to the close, we thought it was time to have a little fun and look back at...
Photochemistry 101, Part III: Setting Up Your Initial Photochemistry Reactions
Setting Up Your Initial Photochemistry Reactions This is the third and final part of a three part series designed to help you get started by understanding light sources...

Contact Us

Interested in learning more about our products?

Complete our short contact form and we’ll get back to you as soon as possible.

Stay up-to-date!
Get insights and tips from experts