Carbon-Heteroatom Cross-Coupling via an Electronically Excited Nickel (II) Complex

Scientific Literature

“The reaction was then sealed with a plastic screw cap and placed in a HepatoChem reactor on a stir plate and irradiated for 18 hours with a 34W blue LED and the internal fan was purposely left off to maintain a slightly elevated temperature of ~35 °C.”

Abstract

While carbon-heteroatom cross coupling reactions have been extensively studied, many methods are specific and limited to a set of substrates or functional groups. Reported here is a method that allows for C-O, C-N and C-S cross coupling reactions under one general methodology. We propose that an energy transfer pathway, in which an iridium photosensitizer produces an excited nickel (II) complex, is responsible for the key reductive elimination step that couples aryl halides to 1° and 2° alcohols, anilines, thiophenols, carbamates and sulfonamides.

Photochemistry

Hepatochem offers a variety of photochemistry reactors and accessories that are used throughout the world to explore chemical conditions. All of our reactors are compatible with most vial formats and stirring plates. We also offer several photochemistry screening kits for calibration and accuracy.

Contact Us!

Interested in learning more about our products?
Complete our short contact form and we'll get back to you as soon as possible.

The Biomimetic Advantage

While microsomes have proven valuable as a predictive tool, their productive capabilities are limited. Biomimetic Chemistry, on the other hand, possesses the advantages of both chemistry and biology and is thus a much more efficient tool for metabolite synthesis.

See our Side By Side Comparison Chart Here

Metabolite Synthesis

Through our revolutionary technology, HepatoChem enables cost effective testable quantities of metabolites in-house even at the earliest stages of drug discovery. This new capability, which enables affordable early metabolite toxicity testing, offers drug companies the opportunity to save millions each year through dramatically improved drug pipelines.